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Formal methods provide a foundation for specification environments leading to
analysis models that are more complete, consistent, and unambiguous than those
produced using conventional or object-oriented methods. The descriptive facilities
of set theory and logic notation enable a software engineer to create a clear state-
ment of facts (requirements).

The underlying concepts that govern formal methods are (1) the data invariant, a
condition true throughout the execution of the system that contains a collection of
data; (2) the state, a representation of a system’s externally observable mode of be-
havior, or (in Z and related languages) the stored data that a system accesses and al-
ters; and (3) the operation, an action that takes place in a system and reads or writes
data to a state. An operation is associated with two conditions: a precondition and
a postcondition.

Discrete mathematics—the notation and heuristics associated with sets and con-
structive specification, set operators, logic operators, and sequences—forms the basis
of formal methods. Discrete mathematics is implemented in the context of formal
specification languages, such as OCL and Z. These formal specification languages
have both syntactic and semantic domains. The syntactic domain uses a symbology
that is closely aligned with the notation of sets and predicate calculus. The semantic
domain enables the language to express requirements in a concise manner.

A decision to use formal methods should consider startup costs as well as the cul-
tural changes associated with a radically different technology. In most instances, for-
mal methods have highest payoff for safety-critical and business-critical systems.
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28.1. Using the OCL or Z notation presented in Tables 28.1 or 28.2, select some part of the Safe
Home security system described earlier in this book and attempt to specify it with OCL or Z.

28.2. Develop a mathematical description for the state and data invariant for Problem 28.4. Re-
fine this description in the OCL or Z specification language.

28.3. You have been assigned to a team that is developing software for a fax modem. Your job is
to develop the “phone book” portion of the application. The phone book function enables up to
MaxNames people to be stored along with associated company names, fax numbers, and other re-
lated information. Using natural language, define

a. The data invariant.
b. The state.
c. The operations that are likely.

28.4. Develop a mathematical description for the state and data invariant for Problem 28.3. Re-
fine this description in the OCL or Z specification language.

28.5. You have been assigned to a software team that is developing software, called Memory
Doubler, that provides greater apparent memory for a PC than physical memory. This is accom-
plished by identifying, collecting, and reassigning blocks of memory that have been assigned to
an existing application but are not being used. The unused blocks are reassigned to applications
that require additional memory. Making appropriate assumptions and using natural language,
define

a. The data invariant.
b. The state.
¢. The operations that are likely.

28.6. Develop a constructive specification for a set that contains tuples of natural numbers of
the form (x, y, z°) such that the sum of x and y equals z.

28.7. Attempt to develop an expression using logic and set operators for the following state

ment: “For all x and y, if x is the parent of y and y is the parent of z, then x is the grandparent of
z. Everyone has a parent.” Hint: Use the function P(x, y) and G(x, z) to represent parent and
grandparent functions, respectively.

28.8. Develop a constructive set specification of the set of pairs where the first element of each
pair is the sum of two nonzero natural numbers and the second element is the difference be-
tween the same numbers. Both numbers should be between 100 and 200 inclusively.

28.9. The installer for a PC-based application first determines whether an acceptable set of
hardware and system resources is present. It checks the hardware configuration to determine
whether various devices (of many possible devices) are present, and determines whether spe-
cific versions of system software and drivers are already installed. What set operator could be
used to accomplish this? Provide an example in this context.

28.10. Review the types of deficiencies associated with less formal approaches to software en-
gineering in Section 28.1.1. Provide three examples of each from your own experience.

28.11. The benefits of mathematics as a specification mechanism have been discussed at
length in this chapter. Is there a downside?
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28.12. Using one or more of the information sources noted in the references to this chapter or
in Further Readings and Information Sources, develop a half-hour presentation on the basic syn-
tax and semantics of a formal specification language other than OCL or Z.

FURTHER READINGS AND INFORMAIION SOURCES

In addition to the books used as references in this chapter, a fairly large number of books on for-
mal methods topics have been published over the past decade. A listing of some of the more
useful offerings follows:

Bowan, J., Formal Specification and Documentation using Z: A Case Study Approach, Interna-
tional Thomson Computer Press, 1996. )

Casey, C., A Programming Approach to Formal Methods, McGraw-Hill, 2000.
Clark. T, et al. (eds.), Object Modeling with OCL, Springer-Verlag, 2002.
Cooper, D., and R. Barden, Z in Practice, Prentice-Hall, 1995.

Craigen, D., S. Gerhart, and T. Ralston, Industrial Application of Formal Methods to Model, De-
sign and Analyze Computer Systems, Noyes Data Corp., 1995.

Harry, A., Formal Methods Fact File: VDM and Z, Wiley, 1997.

Hinchley, M., and J. Bowan, Applications of Formal Methods, Prentice-Hall, 1995.

Hinchley, M., and j. Bowan, Industrial Strength Formal Methods, Academic Press, 1997.
Hussmann, H., Formal Foundations for Software Engineering Methods, Springer-Verlag, 1997.

Jacky, J., The Way of Z: Practical Programming with Formal Methods, Cambridge University
Press, 1997.

Monin, F., and M. Hinchley, Understanding Formal Methods, Springer-Verlag, 2003.

Rann, D, J. Turner, and J. Whitworth, Z: A Beginner’s Guide, Chapman and Hall, 1994,

Ratcliff, B., Introducing Specification Using Z: A Practical Case Study Approach, McGraw-Hill,
1994.

Sheppard, D., An Introduction to Formal Specification with Z and VDM, McGraw-Hill, 1995.

Warmet, J., and A. Kleppe, Object Constraint Language, Addison-Wesley, 1998.

Dean (Essence of Discrete Mathematics, Prentice-Hall, 1996), Gries and Schneider [GRI93], and
Lipschultz and Lipson (2000 Svlved Problems in Discrete Mathematics, McGraw-Hill, 1991) pre-
sent useful information for those who must learn more about the mathematical underpinnings
of formal methods.

A wide variety of information sources on formal methods is available on the Internet. An up-
to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.
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CLEANROOM SOFTWARE
ENGINEERING .

possibly formal methods), program verification (correctness proofs), and

statistical SQA have been combined into a technique that can lead to ex-
tremely high-quality software. Cleanroom software engineering is an approach that
emphasizes the need to build correctness into software as it is being developed.
Instead of the classic analysis, design, code, test, and debug cycle, the cleanroom
approach suggests a different point of view [LIN94]: '

The integrated use of conventional software engineering modeling (and

The philosophy behind cleanroom software engineering is to avoid dependence on
costly defect removal processes by writing code increments right the first time and
verifying their correctness before testing. Its process model incorporates the statisti-
cal quality certification of code increments as they accumulate into a system.

In many ways, the cleanroom approach elevates software engineering to an-
other level. Like the formal methods presented in Chapter 28, the cleanroom
process emphasizes rigor in specification and design, and formal verification of

each design element using correctness proofs that are mathematically based. Ex-

tending the approach taken in formal methods, the cleanroom approach also em-
phasizes techniques for statistical quality control, including testing that is based
on the anticipated use of the software by customers.

When software fails in the real world, immediate and long-term hazards abound.
The hazards can be related to human safety, economic loss, or effective operation
of business and societal infrastructure. Cleanroom software engineering is a process
model that removes defects before they can precipitate serious hazards.

is it important? Mistakes create rework.
work takes time and increases costs. Wouldn't
 if we could dramatically reduce the
number of mistakes (bugs) introduced as the
re is designed and built2 That's the prem-
cleanroom software engineering.

gram construction commences re the stops? Analysis and design mod-
of software reliability as part created using box siructure representation.
ity. The bottom line is / s the system (or some aspect
that would be difficult or Impossl speclﬁc level of abstraction.
using less formal methods. ' jon is applied once the box
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29.1 THE CLEANROOM APPROACH

The philosophy of the “cleanroom” in hardware fabrication technologies is really
quite simple: It is cost- and time-effective to establish a fabrication approach that pre-
cludes the introduction of product defects. Rather than fabricating a product and then
working to remove defects, the cleanroom approach demands the discipline required
to eliminate errors in specification and design and then fabricate in a “clean” manner.
The cleanroom philosophy was first proposed for software engineering by Mills,
Dyer, and Linger [MIL87] during the 1980s. Although early experiences with this dis-
ciplined approach to software work showed significant promise [HAU94}, it has not
gained widespread usage. Henderson [HEN95] suggests three possible reasons:

1. A belief that the cleanroom methodology is too theoretical, too mathematical, and too
radical for use in real software development.

2. It advocates no unit testing by developers but instead replaces it with correctness ver-
ification and statistical quality control—concepts that represent a major departure
from the way most software is developed today.

3. The maturity of the software development industry. The use of cleanroom processes
requires rigorous application of defined processes in all life cycle phases. Since much
of the industry continues operating at relatively low levels of process maturity, soft-
ware engineers have not been ready to apply cleanroom techniques.

Despite elements of truth in each of these concerns, the potential benefits of clean-
room software engineering far outweigh the investment required to overcome the
cultural resistance that is at the core of these concerns.

“The only way for errors to occur in a program is by being put there by the author. No other mechanisms are known
.. Right practice aims at preventing insertion of errors and, failing that, removing them before testing or any other
running of the program.”

Horlan Mills
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29.1.1 The Cleanroom Strategy J

The cleanroom approach makes use of a specialized version of the incremental
process model (Chapter 3). A “pipeline of software increments” [LIN94] is developed
by small independent software teams. As each increment is certified, it is integrated
into the whole. Hence, functionality of the system grows with time.

The sequence of cleanroom tasks for each increment is illustrated in Figure 29.1.
Overall system or product requirements are developed using the system engineering
methods discussed in Chapter 6. Once functicnality has been assigned to the soft-
ware element of the system, the pipeline of cleanroom increments is initiated. The
following tasks occur:

Increment planning. A project plan that adopts the incremental strategy is de-
veloped. The functionality of each increment, its projected size, and a cleanroom
development schedule are created. Special care must be taken to ensure that certi-
fied increments will be integrated in a timely manner.

Requirements gathering. Using techniques similar to those introduced in
Chapter 7, a more-detailed description of customer-level requirements (for each in-
crement) is developed.

Box structure specification. A specification method that makes use of box

structures [HEV93] is used to describe the functional specification. Conforming to

The cleanroom
process model

Increment 1

assas

Increment 2

Increment 3
SE — system engineering CG — code generation
RG — requirements gathering Cl — code inspection
BSS — box structure specification SUT — statistical use testing
FD — formal design C — certification

CV — correctness verification TP — test planning
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the operational analysis principles discussed in Chapters 5 and 7, box structures
“isolate and separate the creative definition of behavior, data, and procedures at
each level of refinement.”

Formal design. Using the box structure approach, cleanroom design is a natu-
ral and seamless extension of specification. Although it is possible to make a clear
distinction between the two activities, specifications (called black boxes) are itera-
tively refined (within an increment) to become analogous to architectural and
component-level designs (called state boxes and clear boxes, respectively).

Correctness verification. The cleanroom team conducts a series of rigorous cor-
rectness verification activities on the design and then the code. Verification (Sections
29.3 and 29.4) begins with the highest-level box structure (specification) and moves
toward design detail and code. The first level of correctness verification occurs by ap-
plying a set of “correctness questions” [LIN88]. If these do not demonstrate that the
specification is correct, more formal (mathematical) methods for verification are used.

Code generation, inspection, and verification. The box structure specifica-
tions, represented in a specialized language, are translated into the appropriate pro-
gramming language. Standard walkthrough or inspection techniques (Chapter 26)
are then used to ensure semantic conformance of the code and box structures and
syntactic correctness of the code. Then correctness verification is conducted for the
source code.

“Cleanroom software engineering achieves statistical quality control over software development by strictly separating
the design process from the testing process in a pipeline of incremental software development.”

Harlan Mills

Statistical test planning. The projected usage of the software is analyzed and
a suite of test cases that exercise a “probability distribution” of usage is planned
and designed (Section 29.4). Referring to Figure 29.1, this cleanroom activity is
conducted in parallel with specification, verification, and code generation.

Statistical use testing. Recalling that exhaustive testing of computer software
is impossible (Chapter 14), it is always necessary to design a finite number of test
cases. Statistical use techniques [POO88] execute a series of tests derived from a
statistical sample (the probability distribution noted earlier) of all possible program
executions by all users from a targeted population (Section 29.4).

Certification. Once verification, inspection, and use testing have been completed
(and all errors are corrected), the increment is certified as ready for integration.

Like other software process models discussed elsewhere in this book, the clean-
room process relies heavily on the need to produce high-quality analysis and de-
sign models. As we will see later in this chapter, box structure notation is simply
another way for a software engineer to represent requirements and design. The
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real distinction of the cleanroom approach is that formal verification is applied to
engineering models.

29.1.2 What Makes Cleanroom Different?

Dyer [DYE92] alludes to the differences of the cleanroom approach when he defines
the process:

Cleanroom represents the first practical attempt at putting the software development
process under statistical quality control with a well-defined strategy for continuous
process improvement. To reach this goal, a cleanroom unique life cycle was defined
which focused on mathematics-based software engineering for correct software designs
and on statistics-based software testing for certification of software reliability.

Cleanroom software engineering differs from the conventional and object-oriented
software engineering methods because:

It makes explicit use of statistical quality control.

2. It verifies design specifications using a mathematically based proof of cor-
rectness.

3. Itimplements testing techniques that have a high likelihood of uncovering
high-impact errors.

Obviously, the cleanroom approach applies most, if not ali, of the basic software en-
gineering principles and concepts presented throughout this book. Good analysis and
design procedures are essential if high quality is to result. But cleanroom engineering
diverges from conventional software practices by deemphasizing (some would say,
eliminating) the role of unit testing and debugging and dramatically reducing (or elim-
inating) the amount of testing performed by the developer of the software.'

In conventional software development, errors are accepted as a fact of life. Be-
cause errors are deemed to be inevitable, each program component should be unit
tested (to uncover errors) and then debugged (to remove errors). When the software
is finally released, field use uncovers still more defects and another test and debug
cycle begins. The rework associated with these activities is costly and time consum-
ing. Worse, it can be degenerative—error correction can (inadvertently) lead to the
introduction of still more errors.

 “it o funay thing obout lfe:  you refuse fo accept anything but the bes!, you may very often get it
: W. Somerset Mougham

In cleanroom software engineering, unit testing and debugging are replaced by
correctness verification and statistically based testing. These activities, coupled with
the record keeping necessary for continuous improvement, make the cleanroom ap-

proach unique.

1 Testing is conducted by an independent testing team.
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Regardleés of the analysis method that is chosen, the operational analysis princi-
ples presented in Chapter 7 apply. Data, function, and behavior are modeled. The
resultant models must be partitioned (refined) to provide increasingly greater de-
tail. The overall objective is to move from a specification (or model) that captures
the essence of a problem to a specification that provides substantial implementa-
tion detail.

Cleanroom software engineering complies with the operational analysis princi-
ples by using a method called box structure specification. A “box” encapsulates the
system (or some aspect of the system) at some level of detail. Through a process of
elaboration or stepwise refinement, boxes are refined into a hierarchy where each
box has referential transparency. That is, “the information content of each box spec-
ification is sufficient to define its refinement, without depending on the implemen-
tation of any other box” [LIN94]. This enables the analyst to partition a system
hierarchically, moving from essential representation at the top to implementation-
specific detail at the bottom. Three types of boxes are used:

Black box. The black box specifies the behavior of a system or a part of a sys-
tem. The system (or part) responds to specific stimuli (events) by applying a set of
transition rules that map the stimulus into a response.

State box. The state box encapsulates state data and services (operations) in a
manner that is analogous to objects. In this specification view, inputs to the state
box (stimuli) and outputs (responses) are represented. The state box also repre-
sents the “stimulus history” of the black box, that is, the data encapsulated in the
state box that must be retained between the transitions implied.

Clear box. The transition functions that are implied by the state box are de-
fined in the clear box. Stated simply, a clear box contains the procedural design for
the state box.

Figure 29.2 illustrates the refinement approach using box structure specification.
A black box (BB;) defines responses for a complete set of stimuli. BB, can be refined
into a set of black boxes, BB, , to BB, ,,, each of which addresses a class of behavior.
Refinement continues until a cohesive class of behavior is identified (e.g., BB, ;). A
state box (SB, ) is then defined for the black box (BB, , ). In this case, SB,,;, con-
tains all data and services required to implement the behavior defined by BB, , , Fi-
nally, SB, ,, is refined into clear boxes (CB, , ,,) and procedural design details are
specified.

As each of these refinement steps occurs, verification of correctness also occurs.
State-box specifications are verified to ensure that each conforms to the behavior
defined by the parent black-box specification. Similarly, clear-box specifications are
verified against the parent state box.



834

PART FIVE ADVANCED TOPICS IN SOFTWARE ENGINEERING

Box structure
refinement

BBy y4

BB,

BBy 13

H(E[q

A black-box
specification

It should be noted that specification methods based on languages such as OCL or Z
(Chapter 28) can be used in conjunction with the box structure specification approach.
The only requirement is that each level of specification can be formally verified.

29.2.1 Black-Box Specification

A black-box specification describes an abstraction, stimuli, and response using the
notation shown in Figure 29.3 [MIL88]. The function fis applied to a sequence, S* of
inputs (stimuli), S, and transforms them into an output (response), R. For simple soft-
ware components, f may be a mathematical function, but in general, fis described
using natural language (or a formal specification language).

Many of the concepts introduced for object-oriented systems are also applicable
for the black box. Data abstractions and the operations that manipulate those ab-
stractions are encapsulated by the black box. Like a class hierarchy, the black box
specification can exhibit usage hierarchies in which low-level boxes inherit the prop-
erties of those boxes higher in the tree structure.
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29.2.2 State-Box Specification

The state box is “a simple generalization of a state machine” [MIL88]. Recalling the
discussion of behavioral modeling and state diagrams in Chapter 8, a state is some
observable mode of system behavior. As processing occurs, a system responds to
events (stimuli) by making a transition from the current state to some new state. As
the transition is made, an action may occur. The state box uses a data abstraction to
determine the transition to the next state and the action (response) that will occur as
a consequence of the transition.

Referring to Figure 29.4, the state box incorporates a black box. The stimulus, S,
that is input to the black box arrives from some external source and a set of internal
system states, T. Mills [MIL88] provides a mathematical description of the function,
, of the black box contained within the state box:

g:S*XT*>RXT

where g is a subfunction that is tied to a specific state, t. When considered collec-
tively, the state-subfunction pairs (t, g) define the black-box function f.

29.2.3 Clear-Box Specification

The clear-box specification is closely aligned with procedural design and structured
programming (Chapter 11). In essence, the subfunction g within the state box is re-
placed by the structured programming constructs that implement g.

As an example, consider the clear box shown in Figure 29.5. The black box, g,
shown in Figure 29 4, is replaced by a sequence construct that incorporates a condi-
tional. These constructs, in turn, can be refined into lower-level clear boxes as step-
wise refinement proceeds.

It is important to note that the procedural specification described in the clear-box
hierarchy can be proved correct. This topic is considered in the next section.
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The design approach used in cleanroom software engineering makes heavy use of
the structured programming philosophy. But in this case, structured programming is
applied far more rigorously.

Basic processing functions (described during earlier refinements of the specifica-
tion) are refined using a “stepwise expansion of mathematical functions into struc-
tures of logical connectives [e.g., if-then-else] and subfunctions, where the expansion
lis} carried out until all identified subfunctions could be directly stated in the pro-
gramming language used for implementation” [DYE92].

The structured programming approach can be used effectively to refine function,
but what about data design? Here a number of fundamental design concepts (Chap-
ters 5 and 9) come into play. Program data are encapsulated as a set of abstractions
that are serviced by subfunctions. The concepts of data encapsulation, information
hiding, and data typing are used to create the data design.

29.3.1 Design Refinement and Verification

Each clear-box specification represents the design of a procedure (subfunction) re-
quired to accomplish a state box transition. With the clear box, the structured pro-
gramming constructs and stepwise refinement are used as illustrated in Figure 29.6.
A program function, f, is refined into a sequence of subfunctions g and h. These in
turn are refined into conditional constructs (if-then-else and do-while). Further re-
finement illustrates continuing logical refinement.

At each level of refinement, the cleanroom team? performs a formal correctness
verification. To accomplish this, a set of generic correctness conditions are attached

2 Because the entire team is involved in the verification process, it is less likely that an error will be
made in conducting the verification itself.
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to the structured programming constructs. If a function fis expanded into a sequence
g and h, the correctness condition for all input to fis

o Does g followed by h do f?

When a function p is refined into a conditional of the form, if <c> then g, else . the
correctness condition for all input to p is

e Whenever condition <¢> is true, does g do p; and whenever <c> is false,
does rdo p?

When function m is refined as a loop, the correctness conditions for all input to m are

¢ Is termination guaranteed?

e Whenever <c> is true, does n followed by m do m; and whenever <c> is
false, does skipping the loop still do m?

Each time a clear box is refined to the next level of detail, these correctness condi-
tions are applied.

It is important to note that the use of the structured programming constructs con-
strains the number of correctness tests that must be conducted. A single condition
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Ficure 29.7
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is checked for sequences; two conditions are tested for if-then-else, and three condi-
tions are verified for loops.

To illustrate correctness verification for a procedural design, we use a simple ex-
ample first introduced by Linger, Mills, and Witt [LIN79]. The intent is to design and
verify a small program that finds the integer part, y, of a square root of a given inte-
ger, x. The procedural design is represented using the flowchart in Figure 29.7.

To verify the correctness of this design, we must define entry and exit conditions
as noted in Figure 29.8. The entry condition notes that x must be greater than or
equal to 0. The exit condition requires that x remain unchanged and that y satisfy the
expression noted in the figure. To prove the design correct, it is necessary to prove
the conditions init, loop, cont, yes, and exit shown in Figure 29.8 are true in all cases.
These are sometimes called subproofs.

1. The condition init demands that [x = 0 and y = 0]. Based on the requirements
of the problem, the entry condition is assumed correct.” Therefore, the first
part of the init condition, x = 0, is satisfied. Referring to the flowchart, the
statement immediately preceding the init condition, sets y = 0. Therefore, the
second part of the init condition is also satisfied. Hence, init is true.

2. The loop condition may be encountered in one of two ways: (1) directly from
init (in this case, the loop condition is satisfied directly) or via control flow
that passes through the condition cont. Since the cont condition is identical to
the loop condition, loop is true regardless of the flow path that leads to it.

3 A negative value for the square root has no meaning in this context.
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FiGure 29.8
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exit: x unchanged and y2 < x < (y + 1)2

3. The cont condition is encountered only after the value of y is incremented by
1. In addition, the control flow path that leads to cont can be invoked only if
the yes condition is also true. Hence, if (y + 1) < x, it follows that y* = x. The
cont condition is satisfied.

4. The yes condition is tested in the conditional logic shown. Hence, the yes
condition must be true when control flow moves along the path shown.

5. The exit condition first demands that x remain unchanged. An examination
of the design indicates that x appears nowhere to the left of an assignment
operator. There are no function calls that use x. Hence, it is unchanged.
Since the conditional test (y + 1) = x must fail to reach the exit condition, it
follows that (y + 1)? = x. In addition, the Joop condition must still be true
(i.e., y? = x). Therefore, (y + 1) > x and y* = x can be combined to satisfy
the exit condition.

We must further ensure that the loop terminates. An examination of the loop con-
dition indicates that because y is incremented and x = 0, the loop must eventually
terminate.

The five steps just noted are a proof of the correctness of the design of the algo-
rithm noted in Figure 29.7. We are now certain that the design will, in fact, compute
the integer part of a square root.

A more rigorous mathematical approach to design verification is possible. How-
ever, a discussion of this topic is beyond the scope of this book. Interested readers
should refer to [LIN79].
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29.3.2 Advantages of Design Verification®*

Rigorous correctness verification of each refinement of the clear-box design has a
number of distinct advantages. Linger [LIN94] describes these in the following

manner:
% What do e It reduces verification to a finite process. The nested, sequential way that

¥ we gain by control structures are organized in a clear box naturally defines a hierarchy
doing correctness - that reveals the correctness conditions that must be verified. An “axiom of

? . . . ) .
proofs? replacement” [LIN79] lets us substitute intended functions with their control

structure refinements in the hierarchy of subproofs. For example, the
subproof for the intended function f1 in Figure 29.9 requires proving that the
composition-of the operations gl and g2 with the intended function f2 has
the same effect on data as f1. Note that f2 substitutes for all the details of its
refinement in the proof. This substitution localizes the proof argument to the
control structure at hand. In fact, it lets the software engineer carry out the
proofs in any order.

e Itis impossible to overemphasize the positive effect that reducing verification to a
Jinite process has on qualily. Even though all but the most trivial programs

M Subproofs:

A design with
subproofs [ f1 = [DO gl; g2: [f2] END] 2
DO

gl
82
[f2] f2 = [WHILE p1 DO [f3] END] ?
WHILE
pl
DO [f3] f3 = [DO g3: [#4]: g8 END] ?
83
[f4] f4 = [IF p2: THEN [f5] ELSE [f6] END] ?
IF
p2
THEN [f5] f5 = [DO g4; g5 END] ?
g4
g5
ELSE [f6] f6 = [DO g6: g7 END] ?

END

4 This section and Figures 29.7 through 29.9 have been adapted from [LIN94] and are used with
permission.
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exhibit an essentially infinite number of execution paths, they can be verified
in a finite number of steps.

e It lets cleanroom teams verify every line of design and code. Teams can carry
out the verification through group analysis and discussion on the basis of the
correctness theorem, and they can produce written proofs when extra confi-
dence in a life- or mission-critical system is required.

e It results in a near zero defect level. During a team review, every correctness
condition of every control structure is verified in turn. Every team member
must agree that each condition is correct, so an error is possible only if every
team member incorrectly verifies a condition. The requirement for
unanimous agreement based on individual verification results in software
that has few or no defects before first execution.

e It scales up. Every software system, no matter how large, has top-level, clear-
box procedures composed of sequence, alternation, and iteration structures.
Each of these typically invokes a large subsystem with thousands of lines of
code—and each of those subsystems has its own top-level intended functions
and procedures. So the correctness conditions for these high-level control
structures are verified in the same way as are those of low-level structures.
Verification at high levels may take, and well be worth, more time, but it does
not take more theory.

e It produces better code than unit testing. Unit testing checks the effects of
executing only selected test paths out of many possible paths. By basing veri-
fication on function theory, the cleanroom approach can verify every possible
effect on all data, because while a program may have many execution paths,
it has only one function. Verification is also more efficient than unit testing.
Most verification conditions can be checked in a few minutes, but unit tests
take substantial time to prepare, execute, and check.

It is important to note that design verification must ultimately be applied to the
source code itself. In this context, it is often called correctness verification.

The strategy and tactics of cleanroom testing are fundamentally different from con-
ventional testing approaches. Conventional methods derive a set of test cases to un-
cover design and coding errors. The goal of cleanroom testing is to validate software
requirements by demonstrating that a statistical sample of use-cases (Chapter 7)
have been executed successfully.

“Quality is not an od, it is o habit.”
Aristotle
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29.4.1 Statistical Use Testing

The user of a computer program rarely needs to understand the technical details of
the design. The user-visible behavior of the program is driven by inputs and events
that are often produced by the user. But in complex systems, the possible spectrum
of input and events (i.e., the use-cases) can be extremely wide. What subset of use-
cases will adequately verify the behavior of the program? This is the first question
addressed by statistical use testing.

Statistical use testing “amounts to testing software the way users intend to use it”
[LIN94]. To accomplish this, cleanroom testing teams (also called certification teams)
must determine a usage probability distribution for the software. The specification
(black box) for each increment of the software is analyzed to define a set of stimuli
(inputs or events) that cause the software to change its behavior. Based on inter-
views with potential users, the creation of usage scenarios, and a general under-
standing of the application domain, a probability of use is assigned to each stimuli.

Test cases are generated for each set of stimuli® according to the usage probability
distribution. To illustrate, consider the SafeHome system discussed earlier in this book.
Cleanroom software engineering is being used to develop a software increment that
manages user interaction with the security system keypad. Five stimuli have been iden-
tified for this increment. Analysis indicates the percent probability distribution of each
stimulus. To make selection of test cases easier, these probabilities are mapped into in-
tervals numbered between 1 and 99 [LIN94] and illustrated in the following table:

S B 4 L S

Program stimulus Probability Interval

Arm/disarm {AD) 50% 1-49
Zone set (ZS) 15% 50-63
Query (Q) 15% 64-78
Test [T) 15% 79-04
Panic alarm 5% 95-99

To generate a sequence of usage test cases that conform to the usage probability
distribution, random numbers between 1 and 99 are generated. Each random num-
ber corresponds to an interval on the preceding probability distribution. Hence, the
sequence of usage test cases is defined randomly but corresponds to the appropri-
ate probability of stimuli occurrence. For example, assume the following random
number sequences are generated:

13-94-22-24-45-56
81-19-31-69-45-9
38-21-52-84-86-4

5 Automated tools may be used to accomplish this. For further information, see [DYE92].
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Selecting the appropriate stimuli based on the distribution interval shown in the
table, the following use-cases are derived:

AD-T-AD-AD-AD-ZS
T-AD-AD-AD-Q-AD-AD
AD-AD-ZS-T-T-AD

The testing team executes these use-cases and verifies software behavior against the
specification for the system. Timing for tests is recorded so that interval times may
be determined. Using interval times, the certification team can compute mean-time-
to-failure. If a long sequence of tests is conducted without failure, the MTTF is low
and software reliability is likely to be high.

29.4.2 Certification

The verification and testing techniques discussed earlier in this chapter lead to soft-
ware components (and entire increments) that can be certified. Within the context of
the cleanroom software engineering approach, certification implies that the reliabil-
ity (measured by mean-time-to-failure, MTTF) can be specified for each component.
The potential impact of certifiable software eomponents goes far beyond a single
cleanroom project. Reusable software components can be stored along with their
usage scenarios, program stimuli, and probability distributions. Each component
would have a certified reliability under the usage scenario and testing regime de-
scribed. This information is invaluable to others who intend to use the components.
The certification approach involves five steps [WOH94]:

Usage scenarios must be created. -
A usage profile is specified.

Test cases are generated from the profile.

> W N -

Tests are executed and failure data are recorded and analyzed.

5. Reliability is computed and certified.

Steps 1 through 4 have been discussed in an earlier section. In this section, we con-
centrate on reliability certification.

Certification for cleanroom software engineering requires the creation of three
models [PO0O93]:

Sampling model. Software testing executes m random test cases and is certi-
fied if no failures or a specified numbers of failures occur. The value of m is derived
mathematically to ensure that required reliability is achieved.

Component model. A system composed of n components is to be certified.
The component model enables the analyst to determine the probability that com-
ponent / will fail prior to completion.

Certification model. The overall reliability of the system is projected and
certified.
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At the completion of statistical use testing, the certification team has the infor-
mation required to deliver software that has a certified MTTF computed using each
of these models.

A detailed discussion of the computation of the sampling, component, and certi-
fication models is beyond the scope of this book. The interested reader should see
[MUS87], [CUR86], and [PO0O93] for additional detail.

Cleanroom software engineering is a formal approach to software development that
can lead to software that has remarkably high quality. It uses box structure specifi-
cation (or formal methods) for analysis and design modeling and emphasizes cor-
rectness verification, rather than testing, as the primary mechanism for finding and
removing errors. Statistical use testing is applied to develop the failure rate infor-
mation necessary to certify the reliability of delivered software.

The cleanroom approach begins with analysis and design models that use a box
structure representation. A “box” encapsulates the system (or some aspect of the
system) at a specific level of abstraction. Black boxes are used to represent the ex-
ternally observable behavior of a system. State boxes encapsulate state data and op-
erations. A clear box is used to model the procedural design that is implied by the
data and operations of a state box.

Correctness verification is applied once the box structure design is complete. The
procedural design for a software component is partitioned into a series of subfunc-
tions. To prove the correctness of the subfunctions, exit conditions are defined for
each subfunction and a set of subproofs is applied. If each exit condition is satisfied,
the design must be correct.

Once correctness verification is complete, statistical use testing commences. Un-
like conventional testing, cleanroom software engineering does not emphasize unit
or integration testing. Rather, the software is tested by defining a set of usage sce-
narios, determining the probability of use for each scenario, and then defining ran-
dom tests’ that conform to the probabilities. The error records that result are
combined with sampling, component, and certification models to enable mathe-
matical computation of projected reliability for the software component.

The cleanroom philosophy is a rigorous approach to software engineering. It is a
software process model that emphasizes mathematical verification of correctness
and certification of software reliability. The bottom line is extremely low failure rates
that would be difficult or impossible to achieve using less formal methods.
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29.1. A bubble sort algorithm is defined in the following manner:

procedure bubblesort;
var i, t, integer;
begin
repeat until t=a[1]
t:=a[l];
for j:= 2tondo
if afj-1] > a[j] then begin

t:=a[j-1]:
a[j-1}:=a[j]:
a[jl:=t:
end

endrep

end

Partition the design into subfunctions, and define a set of conditions that would enable you to
prove that this algorithm is correct.

29.2. Develop a box structure specification for a portion of the PHTRS system introduced in
Problem 8.10.

29.3. If you had to pick one aspect of cleanroom software engineering that makes it radically
different from conventional software engineering approaches, what would it be?

29.4. How do an incremental process model and certification work together to produce high-
quality software?

29.5. Using box structure specification, develop “first-pass” analysis and design models for the
SafeHome system.
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29.6. In your own words, describe the intent of certification in the cleanroom software engi-
neering context.

29.7. Select a program component that you have designed in another context (or one assigned
by your instructor), and develop a complete proof of correctness for it.

29.8. Select a program that you use regularly (e.g., an e-mail handler, a word processor, a
spreadsheet program), and create a set of usage scenarios for the program. Define the proba-
bility of use for each scenario, and then develop a program stimuli and probability distribution
table similar to the one shown in Section 29.4.1.

29.9. For the program stimuli and probability distribution table developed in Problem 29.8, use
a random number generator to develop a set of test cases for use in statistical use testing.

29.10. Document a correctness verification proof for the bubble sort discussed in Problem 29.5.

Prowell et al. (Cleanroom Software Engineering: Technology and Process, Addison-Wesley, 1999)
provide an in-depth treatment of all important aspects of the cleanroom approach. Useful dis-
cussions of cleanroom topics have been edited by Poore and Tframmell (Cleanroom Software En-
gincering: A Reader, Blackwell Publishing, 1996). Becker and Whittaker (Cleanroom Software
Engineering Practices, Idea Group Publishing, 1996) present an excellent overview for those who
are unfamiliar with cleanroom practices.

The Cleanroom Pamphlet (Software Technology Support Center, Hill AF Base, April 1995) con-
tains reprints of a number of important articles. Linger [LIN94] produced one of the better in-
troductions to the subject. The Data and Analysis Center for Software (DACS)
(www.dacs.dtic.mil) provides many useful papers, guidebooks, and other information sources
on cleanroom software engineering.

Linger and Trammell (“Cleanroom Software Engineering Reference Model,” SEI Technical
Report CMU/SEI-96-TR-022, 1996) have defined a set of 14 cleanroom processes and 20 work
products that form the basis for the SEI CMM for cleanroom software engineering (CMU/SEI-
96-TR-023). )

Michael Deck of Cleanroom Software Engineering (www.cleansoft.com) has prepared a
bibliography on cleanroom topics. Many are available in downloadable format.

Design verification via proof of correctness lies at the heart of the cleanroom approach.
Books by Stavely (Toward Zero-Defect Software, Addison-Wesley, 1998), Baber (Error-Free Soft-
ware, Wiley, 1991), and Schulmeyer (Zero Defect Software, McGraw-Hill, 1990) discuss proof of
correctness in considerable detail.

A wide variety of information sources on cleanroom software engineering is available on the
Internet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.
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COMPONENT-BASED
DEVELOPMENT

n the software engineering context, reuse is an idea both old and new. Pro-
grammers have reused ideas, abstractions, and processes since the earliest
days of computing, but the early approach to reuse was ad hoc. Today, com-
plex, high-quality computer-based systems must be.built in a very short time and
demand a more organized approach to reuse.
Component-based software engineering (CBSE) is a process that emphasizes the
design and construction of computer-based systems using reusable software
“components.” Clements [CLE95] describes CBSE in the following way:

[CBSE] is changing the way large software systems are developed. [CBSE] embodies
the “buy, don't build” philosophy espoused by Fred Brooks and others. In the same way
that early subroutines liberated the programmer from thinking about details, [CBSE]
shifts the emphasis from programming software to composing software systems. Im-
plementation has given way to integration as the focus. At its foundation is the as-
sumption that there is sufficient commonality in many large software systems to
justify developing reusable components to exploit and satisfy that commonality.

But a number of questions arise. Is it possible to construct complex systems by
assembling them from a catalog of reusable software components? Can this be
accomplished in a cost- and time-effective manner? Can appropriate incentives
be established to encourage software engineers to reuse rather than reinvent? Is

iovsormaq:oplw:cmc»'ti:k:om&:uék,"ﬂ%ﬁk plis
then assembled using these components
than the discrete ports of a

gramming language.
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management willing to incur the added expense associated with creating reusable
software components? Can the library of components necessary to accomplish reuse
be created in a way that makes it accessible to those who need it? Can components
that do exist be found by those who need them?

Even today, software engineers grapple with these and other questions about
software component reuse. We look at some of the answers in this chapter.

On the surface, CBSE seems quite similar to conventional or object-oriented soft-
ware engineering. The process begins when a software team establishes require-
ments for the system to be built using conventional requirements elicitation
techniques (Chapter 7). An architectural design (Chapter 10) is established, but
rather than moving immediately into more detailed design tasks, the team exam-
ines requirements to determine what subset is directly amenable to composition,
rather than construction. That is, the team asks the following questions for each
system requirement:

o Are commercial off-the-shelf (COTS) components available to implement the
requirement? ‘

¢ Are internally developed reusable components available to implement the
requirement?

e Are the interfaces for available components compatible within the architec-
ture of the system to be built?
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The team may attempt to modify or remove those system requirements that can-
not be implemented with COTS or in-house components.' If the requirement(s)
cannot be changed or deleted, software engineering methods are applied to build
those new components that must be developed to meet the requirement(s). But for
those requirements that are addressed with available components, a different set of
software engineering activities commences: qualification, adaptation, composition,
and update. Each of these CBSE activities is discussed in more detail in Section 30.4.

In the first part of this section, the term component has been used repeatedly, yet
a definitive description of the term is elusive. Brown and Wallnau [BRO96] suggest
the following possibilities:

e Component—a nontrivial, nearly independent, and replaceable part of a system
that fulfills a clear function in the context of a well-defined architecture.

e Run-time software component—a dynamic bindable package of one or more
programs managed as a unit and accessed through documented interfaces
that can be discovered in run time.

o Software component—a unit of composition with contractually specified and
explicit context dependencies only.

e Business component—the software implementation of an “autonomous”
business concept or business process.

In addition to these descriptions, soﬂware components can also be characterized
based on their use in the CBSE process. In addition to COTS components, the CBSE
process yields:

e Qualified components—assessed by software engineers to ensure that not
only functionality, but performance, reliability, usability, and other quality
factors (Chapter 26) conform to the requirements of the system or product to
be built.

e Adapted components—adapted to modify (also called mask or wrap) [BRO96]
unwanted or undesirable characteristics.

e Assembled components—integrated into an architectural style and intercon-
nected with an appropriate infrastructure that allows the components to be
coordinated and managed effectively.

e Updated components—replacing existing software as new versions of compo-
nents become available.

1 The implication is that the organization adjusts its business or product requirements so that
component-based implementation can be achieved without the need for custom engineering. This
approach reduces costs and improves time to market, but it is not always possible.
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The CBSE process is characterized in a manner that not only identifies candidate com-
ponents but also qualifies each component’s interface, adapts components to remove
architectural mismatches, assembles components into a selected architectural style,
and updates components as requirements for the system change [BRO96]. The process
model for component-based software engineering emphasizes paraliel tracks in
which domain engineering (Section 30.3) occurs concurrently with component-based
development.

Figure 30.1 illustrates a typical process model that explicitly accommodates CBSE
[CHR95]. Domain engineering creates a model of the application domain that is used
as a basis for analyzing user requirements in the software engineering flow. A
generic software architecture provides input for the design of the application. Finally,
after reusable components have been purchased, selected from existing libraries, or
constructed (as part of domain engineering), they are made available to software en-
gineers during component-based development.

The analysis and architectural design steps defined as part of component-based de-
velopment (Figure 30.1) can be implemented within the context of an abstract design
paradigm (ADP) [DOGO3]. An ADP implies that the overall model of the software—
represented as data, function, and behavior (control)—can be decomposed hierar-
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